

# PREDICTIVE ANALYTICS REVELATION



02.27.2014





- Introduction
- Who we are!
- How to build Predictive Models?
- Demonstration: IBM SPSS
- Success Stories
- Questions and Answers

## Why MindStream Analytics







Windstream was awarded the 2014 ProformaTECH Award for Excellence, for the Most Effective Adaption of Technology by a Finance Organization.

### Putting a smile on executives face!

MindStream helps guide executives; integrating data from different sources and extracting value from it.

> Leveraging our Analytics technology partnership with IBM reduces our customers' risk, while providing high value, award winning projects that take a direct line to bottom line value.

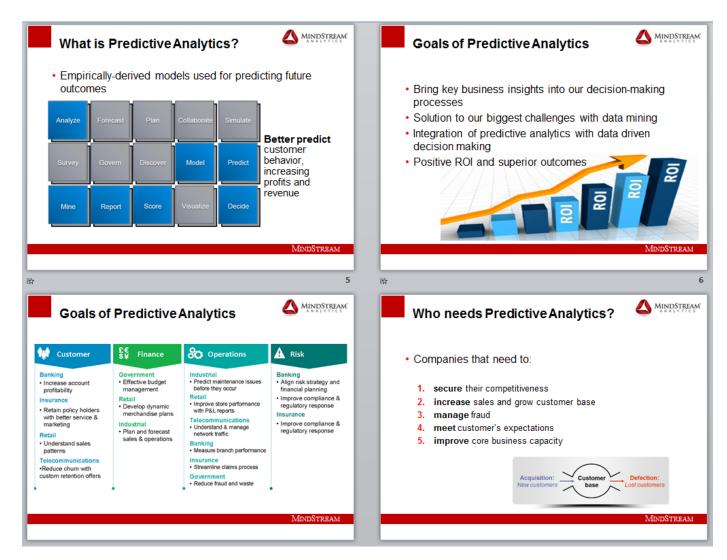


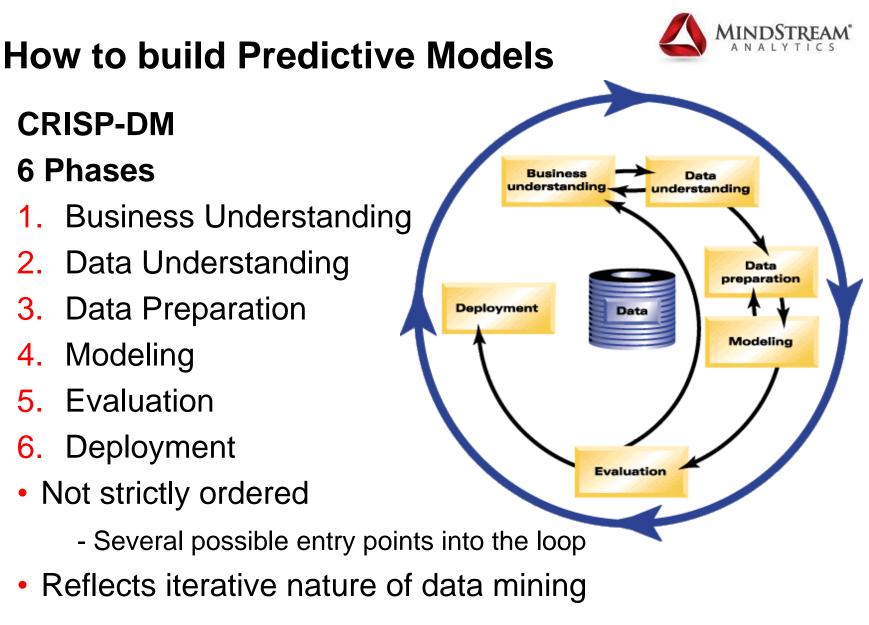




### Last webinar







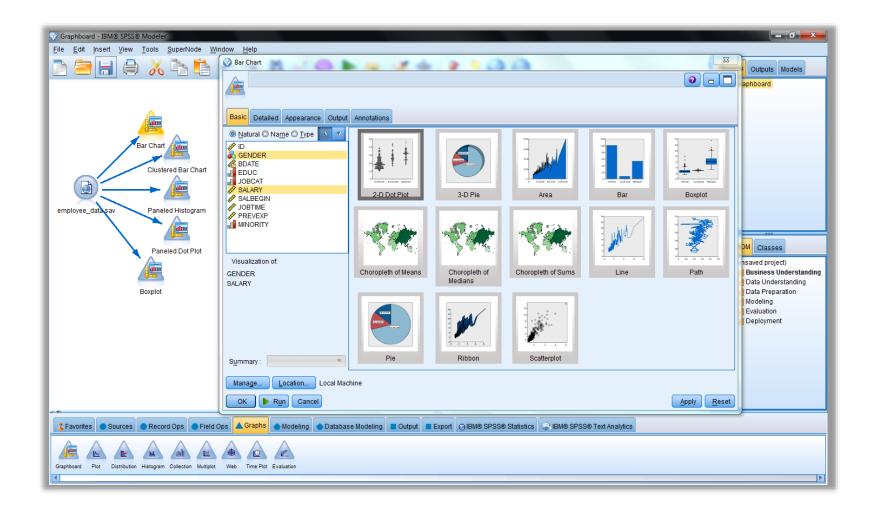


- High-performance data mining and text analytics
- Utilizes structured and unstructured data
- Creates predictive analytics for data driven decision making
- Enables superior outcomes and positive ROI

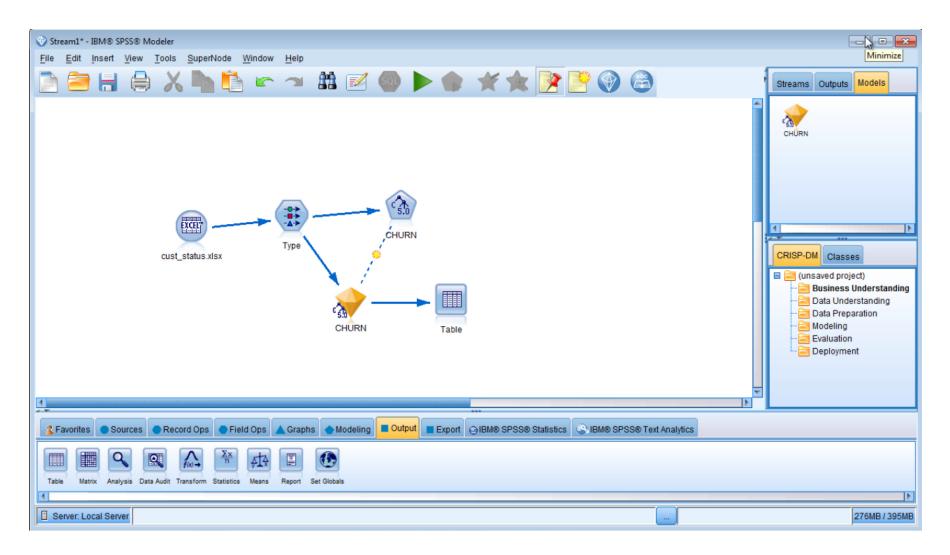


- Easy-to-use, interactive interface without the need for programming
- Automated modeling and data preparation capabilities
- Access ALL data structured and unstructured from disparate sources
- Natural Language Processing (NLP) to extract concepts and sentiments in text
- Entity Analytics ensures the quality of the data and results in more accurate models









## **SPSS Decision Management**



| t If                         |                           |           |             |                            |                       |                            |           |            |                            | 2                       |
|------------------------------|---------------------------|-----------|-------------|----------------------------|-----------------------|----------------------------|-----------|------------|----------------------------|-------------------------|
| lation                       | Data Source               | s         | imulation   | Date                       |                       | Claim Area                 |           |            |                            |                         |
| dbank d                      | laims data                | * 2       | 010-04-26   | 10:42:37                   | 15                    | Auto                       | ٣         | 1          |                            |                         |
|                              |                           |           |             | Model actio                | ins                   |                            |           |            | Results                    |                         |
|                              | Combine<br>matrix         | Refer     |             |                            |                       | Fast Track                 |           | Action     | Count                      | Percent                 |
|                              | Refer                     | Refer     |             | Refer                      |                       | Standard                   | *         | Fast Track | 710                        | 91.03%                  |
| ules                         | Standard                  | Standard  | -           | Standard                   | *                     | Standard                   |           | Refer      | 3                          | 0.38%                   |
| tions                        |                           |           |             |                            |                       |                            |           | Standard   | 67                         | 8.59%                   |
|                              | Fast Track                | Fast Trac | k 🔻         | Fast Track                 | ×.                    | Fast Track                 | - ¥       |            | 780                        | 100%                    |
|                              |                           |           | ime: Run 3  | 3                          |                       | Run                        |           |            | Update Se                  | ettings Clo             |
|                              | I Simulation Re           |           |             | 3<br>Number of r           |                       |                            |           |            | Update Se                  | ettings Clo             |
|                              | lay Count                 |           |             | Number of r                |                       | tained: 2                  | stributio | n Simi     | Update So                  |                         |
| Disp<br>Acti                 | lay Count                 |           | Run1        | Number of r                | runs re               | tained: 2                  | stributio | Sim        |                            | "what-if"               |
| Disp<br>Acti                 | lay Count<br>Ion<br>Track |           | <b>Run1</b> | Number of r                | runs re<br>Run 2<br>7 | etained: 2<br>2💢 Di        | stributio | scer       | ulations and               | "what-if"<br>are and te |
| Disp<br>Acti<br>Fast<br>Refe | lay Count<br>Ion<br>Track |           | <b>Run1</b> | Number of r<br>I 💥 🔳<br>80 | runs re<br>Run 2<br>7 | etained: 2<br>2 X Di<br>10 | stributio | scer       | ulations and<br>arios comp | "what-if"<br>are and te |

### **Data on Airlines in SFO**



- Collected monthly via customer interviews held at all airport terminals and boarding areas from July 2005 through March 2011
- Interviews were done using a stratified random sample of flights selected by airport staff
- The questionnaires were available in English, Japanese, Chinese, and Spanish.

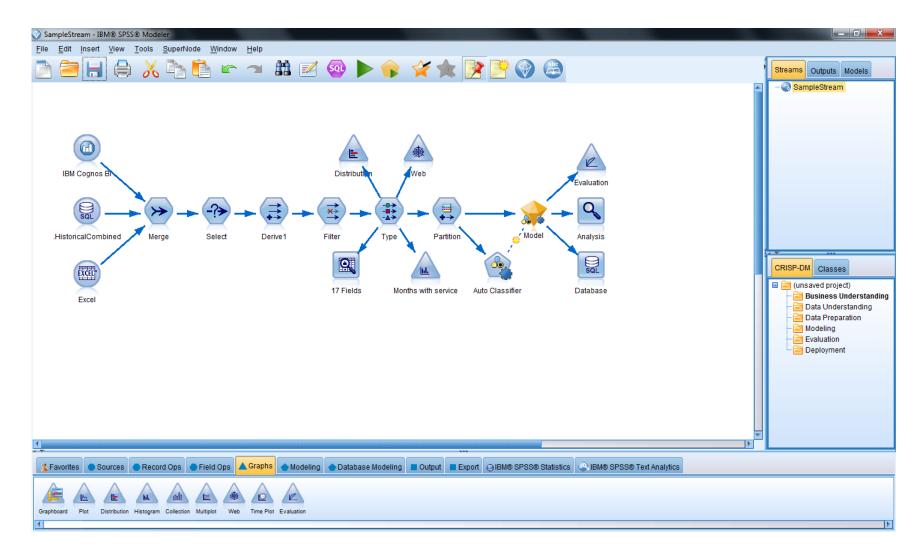
### **Data on Airlines in SFO**



- Understanding the data: determining which fields in the data to use as predictors and which ones to discard.
- Partitioning the file
- **Training the model:** we will use one of the partitioned data to train the model.
- Scoring the model: we will use the other partitioned data to score the model.

### **Airlines in SFO - Model**





## **Airlines in SFO** Handling Missing Values and Outliers

| Measurement    | Outliers | Extremes | Action | Impute Missing      | Method       | %      | 5                      |    |
|----------------|----------|----------|--------|---------------------|--------------|--------|------------------------|----|
| 💑 Nominal      |          |          |        | Never               | Fixed        |        | 1                      |    |
| 🔗 Continuous 👘 | 0        | 0        | None   | Never               | Fixed        |        | 1                      |    |
| 🔗 Continuous 🚽 | 0        | 0        | None   | Never               | Fixed        |        |                        |    |
| 🎖 Flag         |          |          |        | Blank & Null Values | Fixed 🔻      | 2      |                        |    |
| 🔗 Continuous   | 12       | 0        | None   | Never               | Fixed        |        |                        |    |
| 🔗 Continuous   | 9        | 6        | None   | Never               | Random       |        |                        |    |
| 📶 Ordinal      |          |          |        | Never               | Expression   |        |                        |    |
| 🔗 Continuous   | 8        | 0        | None   | Never               | Algorithm N  |        |                        |    |
| 🢑 Nominal      |          |          |        | Never               | Specify      |        |                        |    |
| 💑 Nominal      |          |          |        | Never               | Fixed        | -      |                        |    |
| 👖 Ordinal      |          |          |        | Never               | Fixed        |        |                        |    |
| 📲 Ordinal 🥈    |          |          |        | Never               | Imputation   | Settin | nas                    | 23 |
| 🔓 Flag         |          |          |        | Never               |              |        | Transaction Constants  |    |
| 🔓 Flag         |          |          |        | Never               | Field: I     | ogtoll | Storage: 🛭 🚸 Real      |    |
| 🎖 Flag         |          |          |        | Never               | Impute when: |        | Diank & Null Values -  | 1  |
| 🖉 Continuous   | 18       | 4        | None   | Never               | impute when  |        | Blank & Null Values 🔻  | 1  |
| 🖉 Continuous   | 9        |          | None   | Never               | Condition:   |        |                        |    |
| 🖉 Continuous   | 2        |          | None   | Never               |              |        |                        |    |
| 🔗 Continuous 👘 | 11       | 3        | None   | Never               |              |        |                        |    |
|                |          |          |        |                     | Impute Metho | d:     | Fixed                  | *  |
|                |          |          |        |                     | Impute Fixed | Values |                        |    |
|                |          |          |        |                     | Fixed as:    | Mean   | <b>~</b>               |    |
|                |          |          |        |                     | Value:       | 3.240  |                        |    |
|                |          |          |        |                     |              |        | OK Cancel <u>H</u> elp |    |

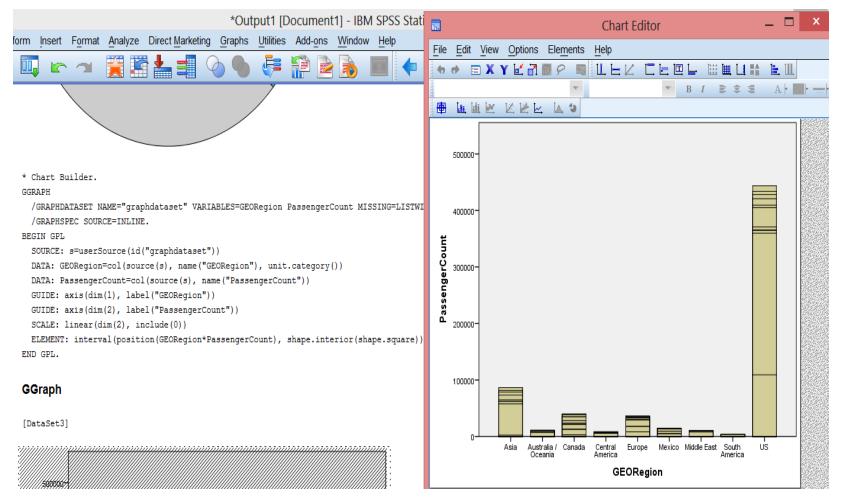




## Airlines in SFO – Bar Chart



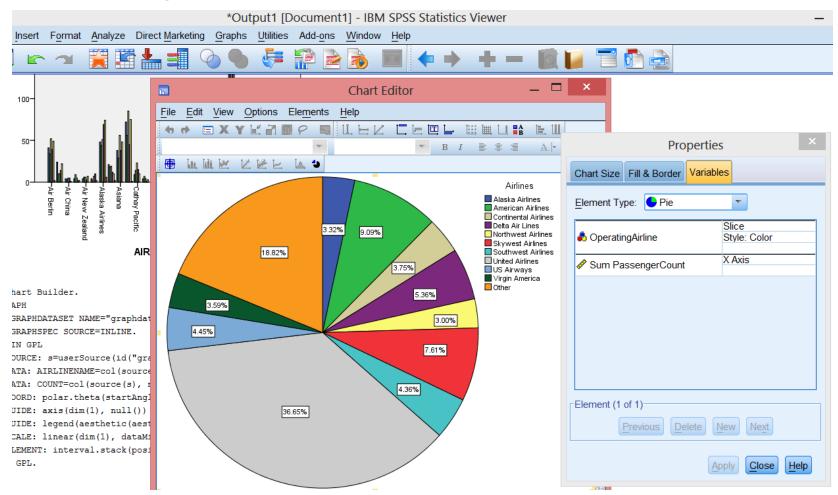
#### Passengers by Origin or Destination



## Airlines in SFO – Pie Chart



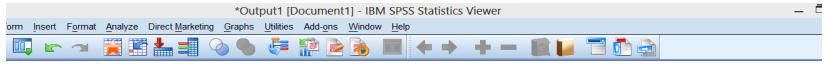
#### Passengers by Airlines



### **Airlines in SFO - Crosstab**



#### Cross Tabulation of Destinations and Incomes



CROSSTABS

/TABLES=DEST BY Q21 /FORMAT=DVALUE TABLES

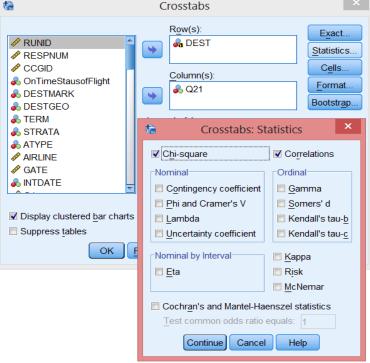
/STATISTICS=CHISQ CORR

/CELLS=COUNT COLUMN

/COUNT ROUND CELL

/BARCHART.

| DEST * Q21 Crosstabulation |              |      |      |      |      |      |       |       |  |
|----------------------------|--------------|------|------|------|------|------|-------|-------|--|
|                            |              |      | Q21  |      |      |      |       |       |  |
|                            |              | 0    | 1    | 2    | 3    | 4    | 5     | Total |  |
| DEST                       | TOKYO-NRT    | 10   | 8    | 20   | 20   | 13   | 5     | 76    |  |
|                            |              | 1.3% | 1.2% | 2.1% | 3.1% | 1.6% | 16.7% | 2.0%  |  |
|                            | SEATTLE      | 26   | 32   | 46   | 29   | 35   | 2     | 170   |  |
|                            |              | 3.5% | 4.7% | 4.8% | 4.5% | 4.4% | 6.7%  | 4.4%  |  |
|                            | PHILADELPHIA | 26   | 13   | 28   | 18   | 36   | 2     | 123   |  |
|                            |              | 3.5% | 1.9% | 2.9% | 2.8% | 4.5% | 6.7%  | 3.2%  |  |
|                            | NEW YORK-JFK | 45   | 25   | 53   | 33   | 64   | 2     | 222   |  |
|                            |              | 6.0% | 3.7% | 5.5% | 5.1% | 8.0% | 6.7%  | 5.7%  |  |
|                            | LOS ANGELES  | 39   | 53   | 72   | 48   | 32   | 1     | 245   |  |
|                            |              | 5.2% | 7.8% | 7.5% | 7.4% | 4.0% | 3.3%  | 6.3%  |  |
|                            | LONG BEACH   | 5    | 16   | 20   | 9    | 11   | 1     | 62    |  |
|                            |              | 0.7% | 2.3% | 2.1% | 1.4% | 1.4% | 3.3%  | 1.6%  |  |
|                            | LONDON-HEATH | 21   | 14   | 19   | 12   | 17   | 2     | 85    |  |
|                            |              | 2.8% | 2.0% | 2.0% | 1.8% | 2.1% | 6.7%  | 2.2%  |  |
|                            | LAS VEGAS    | 33   | 34   | 35   | 25   | 23   | 2     | 152   |  |
|                            |              | 4.4% | 5.0% | 3.6% | 3.8% | 2.9% | 6.7%  | 3.9%  |  |
|                            | KLAMATH FALL | 5    | 3    | 5    | 0    | 1    | 0     | 14    |  |
|                            |              | 0.7% | 0.4% | 0.5% | 0.0% | 0.1% | 0.0%  | 0.4%  |  |
|                            | KAHULUI      | 5    | 3    | 8    | 6    | 4    | 0     | 26    |  |
|                            |              | 0.7% | 0.4% | 0.8% | 0.9% | 0.5% | 0.0%  | 0.7%  |  |
|                            | HOUSTON      | 15   | 20   | 23   | 19   | 24   | 0     | 101   |  |
|                            |              | 2.0% | 2.9% | 2.4% | 2.9% | 3.0% | 0.0%  | 2.6%  |  |
|                            | HONOLULU     | 24   | 26   | 24   | 7    | 16   | 0     | 97    |  |
|                            |              | 3.2% | 3.8% | 2.5% | 1.1% | 2.0% | 0.0%  | 2.5%  |  |



• Q21\_Income Group column: 1=Under 50,000, 2=\$50,000 - \$100,000, 3=\$100,001 - \$150,000, 4=Over \$150,000, 5=Over \$500,000



## Airlines in SFO – Crosstab (cont.)



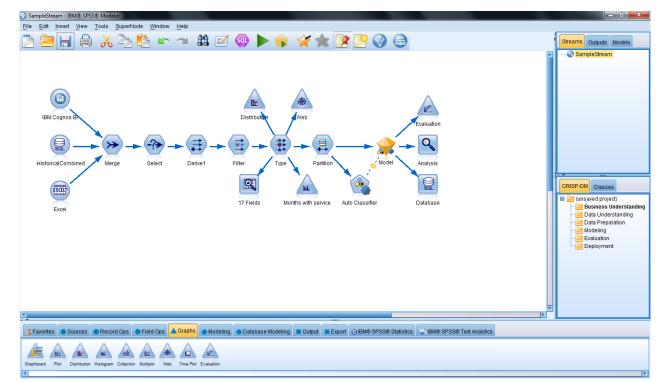
| DEST * Q21 Crosstabulation |      |      |      |      |      |       |       |
|----------------------------|------|------|------|------|------|-------|-------|
|                            |      |      |      |      |      |       |       |
|                            | 0    | 1    | 2    | 3    | 4    | 5     | Total |
| TOKYO-NRT                  | 10   | 8    | 20   | 20   | 13   | 5     | 76    |
|                            | 1.3% | 1.2% | 2.1% | 3.1% | 1.6% | 16.7% | 2.0%  |
| SEATTLE                    | 26   | 32   | 46   | 29   | 35   | 2     | 170   |
|                            | 3.5% | 4.7% | 4.8% | 4.5% | 4.4% | 6.7%  | 4.4%  |
| PHILADELPHIA               | 26   | 13   | 28   | 18   | 36   | 2     | 123   |
|                            | 3.5% | 1.9% | 2.9% | 2.8% | 4.5% | 6.7%  | 3.2%  |
| NEW YORK-JFK               | 45   | 25   | 53   | 33   | 64   | 2     | 222   |
|                            | 6.0% | 3.7% | 5.5% | 5.1% | 8.0% | 6.7%  | 5.7%  |
| LOS ANGELES                | 39   | 53   | 72   | 48   | 32   | 1     | 245   |
|                            | 5.2% | 7.8% | 7.5% | 7.4% | 4.0% | 3.3%  | 6.3%  |
| LONG BEACH                 | 5    | 16   | 20   | 9    | 11   | 1     | 62    |
|                            | 0.7% | 2.3% | 2.1% | 1.4% | 1.4% | 3.3%  | 1.6%  |
| LONDON-HEATH               | 21   | 14   | 19   | 12   | 17   | 2     | 85    |
|                            | 2.8% | 2.0% | 2.0% | 1.8% | 2.1% | 6.7%  | 2.2%  |
| LAS VEGAS                  | 33   | 34   | 35   | 25   | 23   | 2     | 152   |
|                            | 4.4% | 5.0% | 3.6% | 3.8% | 2.9% | 6.7%  | 3.9%  |
| KLAMATH FALL               | 5    | 3    | 5    | 0    | 1    | 0     | 14    |
|                            | 0.7% | 0.4% | 0.5% | 0.0% | 0.1% | 0.0%  | 0.4%  |
| KAHULUI                    | 5    | 3    | 8    | 6    | 4    | 0     | 26    |
|                            | 0.7% | 0.4% | 0.8% | 0.9% | 0.5% | 0.0%  | 0.7%  |
| HOUSTON                    | 15   | 20   | 23   | 19   | 24   | 0     | 101   |
|                            | 2.0% | 2.9% | 2.4% | 2.9% | 3.0% | 0.0%  | 2.6%  |
| HONOLULU                   | 24   | 26   | 24   | 7    | 16   | 0     | 97    |
|                            | 3.2% | 3.8% | 2.5% | 1.1% | 2.0% | 0.0%  | 2.5%  |

• Q21\_Income Group column: 1=Under 50,000, 2=\$50,000 - \$100,000, 3=\$100,001 - \$150,000, 4=Over \$150,000, 5=Over \$500,000

- It is obvious that Airlines should provide First Class and Business Class on the top 8 routes
- On the remaining routes it is not necessary

### **Airlines in SFO – Scoring Model**





| 'Partition' | 1_Training |        | 2_Testing |        | 3_Validation |        |
|-------------|------------|--------|-----------|--------|--------------|--------|
| Correct     | 33,145     | 96.33% | 9,402     | 95.82% | 4,814        | 96.22% |
| Wrong       | 1,261      | 3.67%  | 410       | 4.18%  | 189          | 3.78%  |
| Total       | 34,406     |        | 9,812     |        | 5,003        |        |

### HCDE



**MINDSTREAM** 

#### Challenges

- Increase its high school graduation rate
- Intervene with at-risk students early enough to prevent them from dropping out
- Analyze 23,000 text-based surveys and other data
- Provide the right data to make daily decisions that will help their students achieve a brighter future

### 10%

the increase in graduation rates

### 25 hours

cut off the workload of creating each report



## HCDE



#### **Benefits from using Predictive Analytics**

- Teachers and administrators can now identify at-risk students and constructively intervene with personalized assistance
- Predict which intervention activities will have the optimal impact on students
- Produces year-over-year improvements in behavior and attendance

### **10%**

the increase in graduation rates

### 25 hours

cut off the workload of creating each report



## **XO Communications**





#### Challenges

- Telecommunications companies need to control churn
- Numerous small or mid sized customers to manage
- Higher propensity to churn than large customers
- Inefficient to reach out to each customer
- No clear reliable means to identify customers at risk

### 376%

return on investment

### 5 Months

The time it took to pay back the investment

#### **\$3M** Average annual benefit



## **XO Communications**





#### **Results using Predictive Analytics**

- Customers are scored on likelihood to churn per month
- Through the BI web interface, client service managers access predictive data and customer profiles based on territory and prioritize customer outreach

### 376%

return on investment

### 5 Months

The time it took to pay back the investment

#### **\$3M** Average annual benefit





## **Centerstone Research Institute**



**MINDSTREAM** 



#### Challenges

- Want to ensure that patients actually receive the benefits of new breakthroughs
- Patients receive correct diagnoses and treatment less than 50 percent of the time on first pass through system
- Want to use emergent analytics technologies to connect researchers and healthcare providers

#### 42%

improvement in patient outcomes

#### 58%

anticipated reduction in cost per unit of outcome change



## **Centerstone Research Institute**



**MINDSTREAM** 



#### **Benefits from Predictive Analytics**

- Created predictive models to assess the effectiveness of various treatment options based on thousands of patients
- · Foresight into how treatment would work over time
- Improved operating costs, productivity within clinics and insurance reimbursements

#### **42%**

improvement in patient outcomes

#### 58%

anticipated reduction in cost per unit of outcome change



Conclusion



Magic Quadrant for Business Intelligence & Analytics Platforms



### **Recent Clients**



| Pharmaceuticals                   | Media / Telco                               | Financial Services               | Consumer                       | Technology                                 |
|-----------------------------------|---------------------------------------------|----------------------------------|--------------------------------|--------------------------------------------|
| Bayer HealthCare<br>Consumer Care |                                             | vantiv                           | StanleyBlack&Decker            | IBM                                        |
| gsk Celgene                       | <b>veri<u>zon</u><br/>IIIII CABLEVISION</b> | FARM CREDIT BANK                 |                                | salesforce                                 |
| Bayer HealthCare                  |                                             | ING 🍌 DIRECT                     | Cinquita                       |                                            |
| Pharmaceuticals                   | windstream.<br>communications               | 📲 FirstMarblehead                | AVON                           | brightcove                                 |
| Bayer HealthCare<br>Animal Health | Associated Press                            | VISA                             | CHANEL                         | <b>OPERA</b><br>software                   |
| Energy                            | Industrial                                  | Education                        | Healthcare                     | Real Estate / REIT                         |
| ΑΤCΟ                              | tyco                                        | DINVERSITY OF PENNSYLVANIA       | Scientific                     | SIMON <sup>*</sup> PROPERTY<br>GROUP, INC. |
| HESS                              | CNH                                         | University of<br>■ Phoenix=      | CATHOLIC<br>HEALTH<br>PARTNERS | Taubman                                    |
| noble<br>energy                   | BARRICK                                     | CHICAGO<br>PUBLIC<br>SCHOOLS CPS | <b>Cigna</b> .<br>Brookdale    | IRON MOUNTAIN"                             |
| KCPSLC.<br>energizing <i>life</i> |                                             | Edison<br>Schools                | HEALTHSOUTH.                   | HEALTHCARE 🚫 REIT                          |



# Thank You !



#### Del Rogers VP of Sales MindStream Analytics

Cell: 214.417.4613 drogers@mindstreamanalytics.com Twitter: @deljr Cuong Nguyen Tien Business Intelligence Consultant MindStream Analytics 917-294-3417 <u>ctien@mindstreamanalytics.com</u> Twitter: @cuongcz

2

